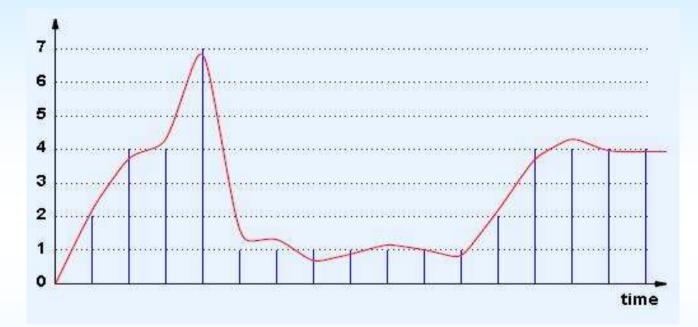
Transporting Voice by Using IP

National Chi Nan University

Quincy Wu

Email: solomon@ipv6.club.tw

1


Outline

- Introduction
- Voice over IP
- RTP & SIP
- Conclusion

Digital Circuit Technology

- Developed by telephone companies
- Motivation: *analog signals* degrade as they pass over copper wires
 - Amplifiers distort the signal slightly and introduces noise.
- Designed for use in voice systems since 1962
 - Analog audio from user's telephone converted to digital format
 - Digital format sent across network
 - Digital format converted back to analog audio

Illustration of Digitized Signal

- Pick nearest digital value for each sample
 0,2,4,4,7,1,1,1,1,1,1,2,4,4,4,4
- Telephone standard known as *Pulse Code Modulation (PCM)*

Transporting Voice over Internet

- Digitized Payload
 - G.711(PCM) u-law / A-law
 - G.729
- Transport-Layer Protocol
 - TCP
 - UDP
- Network-Layer Protocol
 - IP (IPv4 and IPv6)

VoIP

- Transport voice traffic using the Internet Protocol (IP)
- One of the greatest challenges to VoIP is voice quality.
- One of the keys to acceptable voice quality is bandwidth.
- Control and prioritize the access
- Internet: best-effort transfer
 - VoIP != Voice over Internet
 - The next generation Telcos
 - Access and bandwidth are better managed.

Data and Voice

- Data traffic
 - Asynchronous can be delayed
 - Extremely error sensitive
- Voice traffic
 - Synchronous the stringent delay requirements
 - More tolerant for errors
- IP is not for voice delivery.
- VoIP must
 - Meet all the requirements for traditional telephony
 - Offer new and attractive capabilities at a lower cost

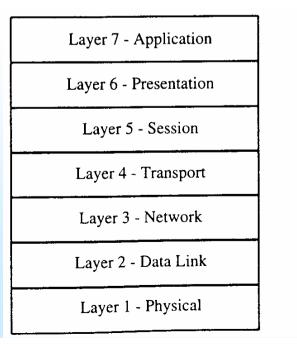
Lower Bandwidth Requirements

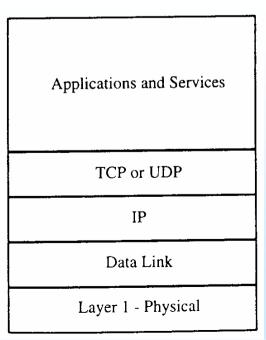
– PSTN

- G.711 64 kbps
- Human speech frequency < 4K Hz
- The Nyquist Theorem: 8000 samples per second
- 8K * 8 bits
- Sophisticated coders
 - 32kbps, 16kbps, 8kbps, 6.3kbps, 5.3kbps
 - GSM 13kbps
 - Save more bandwidth by silence-detection
- Traditional telephony networks can use coders, too.
 - But it is more difficult.
- VoIP two ends of the call negotiate the coding scheme

Overview of the IP Protocol Suite

- IP
 - A routing protocol for the passing of data packets
 - Must work in cooperation with higher layer protocols and lower-layer transmission systems
- The OSI seven-layer model
 - The top layer: useable information to be passed to the other side
 - The information must be
 - Packaged appropriately
 - Routed correctly
 - And it must traverse some physical medium


The IP suite and the OSI stack


– TCP

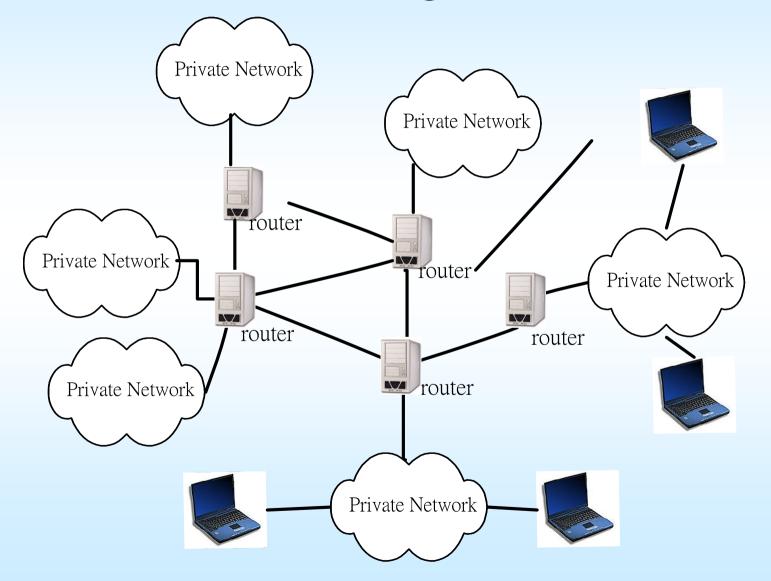
• Reliable, error-free, in-sequence delivery

– UDP

• No sequencing, no retransmission

10

TCP/IP


TCP/IP

- IP A packet-based protocol
 - Routing on a packet-by-packet base
- Packet transfer with no guarantees
 - May not receive in order
 - May be lost or severely delayed
- TCP
 - Retransmission
 - Assemble the packets in order
 - Congestion control
 - Useful for file-transfers and e-mail

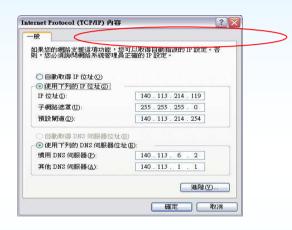
Internet Overview

- A collection of networks
 - The private networks
 - LANs, WANs
 - Institutions, corporations, business and government
 - May use various communication protocols
 - The public networks
 - ISP: Internet Service Providers
 - Using Internet Protocol
 - To connect to the Internet
 - Using IP

Interconnecting Networks

14

IP

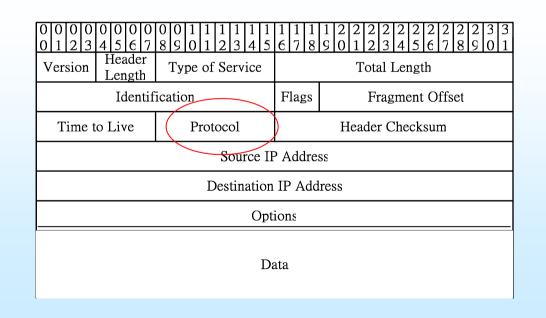

- RFC 791
 - Amendments: RFCs 950, 919, and 920
 - Requirements for Internet hosts: RFCs 1122, 1123
 - Requirements for IP routers: RFC 1812
 - IP datagram
 - Data packet with an IP header
 - Best-effort protocol
 - No guarantee that a given packet will be delivered

IP addresses: how to get one?

Q: How does *host* get IP address?

- Manually configuration
 - Wintel: control-panel->network-> configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

(more shortly)



一般其他設定	
如果您的網路支援這項功能, 則,您必須詢問網路系統管理」	您可以取得自動指派的 IP 設定。否 員正確的 IP 設定。
◎ 自動取得 IP 位址(○)	
── 使用下列的 IP 位址②:	
IP 位址①:	
子網路這罩(U)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
預設開道(型):	
○ 自動取得 DNS 伺服器位址	(B)
→ 使用下列的 DNS 伺服器位	(址E):
慣用 DNS 伺服器(P):	140.113.6.2
其他 DNS 伺服器(A):	140.113.1.1
9	<u>進階(V)</u>

IP Header

- Protocol

- The higher-layer protocol
- TCP (6); UDP (17)
- Source and Destination IP Addresses

TCP

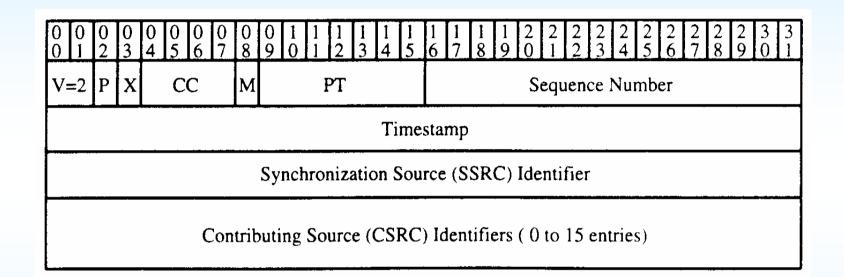
- Transmission Control Protocol
 - RFC 793
 - In sequence, without omissions and errors
 - End-to-end confirmation, packet retransmission, flow control, congestion control
 - The source retransmits if no ACK is received within a given period.
 - Applications: HTTP, FTP, TELNET, SMTP

UDP

- User Datagram Protocol
 - Pass individual pieces of data from an application to IP
 - No ACK, inherently unreliable
 - Applications
 - A quick, on-shot transmission of data, request/response
 - DNS (udp port 53)
 - If no response, the application retransmits the request
 - Checksum

0 0 0 0 0 0 0 1	1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1			
Source Port	Destination Port			
Length	Checksum			

Voice over UDP, not TCP


- Speech
 - Small packets, 10 40 ms
 - Occasional packet loss is not a catastrophe
 - Delay-sensitive
 - TCP: connection set-up, ack, retransmit \rightarrow delays
 - 5 % packet loss is acceptable if evenly spaced
 - Resource management and reservation techniques
 - A managed IP network
 - In-sequence delivery
 - Mostly yes
- But, UDP was not designed for voice traffic

Real-time Transport Protocol (RTP)

Real-Time Transport Protocol

- Disadvantage of UDP
 - Packets may be lost or out-of-sequence
- RTP: A Transport Protocol for Real-Time Applications
 - RFC 1889; RFC 3550
 - RTP Real-Time Transport Protocol
 - RTCP RTP Control Protocol
- RTP over UDP
 - A sequence number
 - A time stamp for synchronized play-out
 - Does not solve the problems; simply provides additional information

RTP Header Format

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1					
Profile-specific information	Length					
Header extension						

The RTP Header

- Sequence number
 - A random number generated by the sender at the beginning of a session
 - Incremented by one for each RTP packet
- Timestamp
 - The receiver
 - Synchronized play-out
 - Calculate the jitter
 - Support silence suppression
 - The initial timestamp is a random number chosen by the sending application.
- Payload Type (PT)
 - In general, a single RTP packet will contain media coded according to only one payload format.
 - RED is an exception.

RTP Payload Formats [1/2]

- RTP carries the actual digitally encoded voice
 - RTP header + a payload of voice/video samples
 - UDP and IP headers are attached
- Many voice- and video-coding standards
 - A payload type identifier in the RTP header
 - Specified in RFC 1890
 - New coding schemes have become available
 - A sender has no idea what coding schemes a receiver could handle.
 - Negotiated by signaling protocols like SIP.

RTP Payload Formats [2/2]

- Separate signaling systems
 - Capability negotiation during the call setup
 - SIP and SDP
 - A dynamic payload type may be used
 - Support new coding scheme in the future
 - The encoding name is also significant.
 - Unambiguously refer to a particular payload specification
 - Should be registered with the IANA
- RED, Redundant payload type
 - Voice samples + previous samples
 - May use different encoding schemes
 - Cope with packet loss

Speech-coding Techniques

• In general, coding techniques are such that speech quality degrades as bandwidth reduces.

– The relationship is not linear.

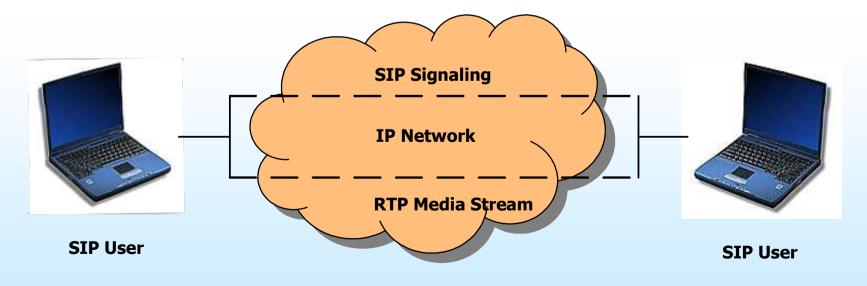
•	G.711	64kbps	4.3
•	G.726	32kbps	4.0
•	G.723 (celp)	6.3kbps	3.8
•	G.728	16kbps	3.9
•	G.729	8kbps	4.0
•	GSM	13kbps	3.7
•	iLBC	13.3kbps	3.9

RTCP

- A companion protocol
- Exchange messages between session users
- # of lost packets, delay and inter-arrival jitter
- Quality feedback
- RTCP is implicitly open when an RTP session is open
- E.g., RTP/RTCP uses UDP port 5004/5005

Session Initiation Protocol (SIP)

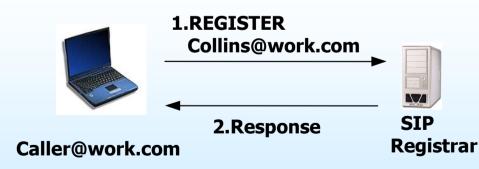
Introduction


- A powerful alternative to H.323
- More flexible, simpler
- Easier to implement
 - Advanced features
- Better suited to the support of intelligent user devices
- A part of IETF multimedia data and control architecture

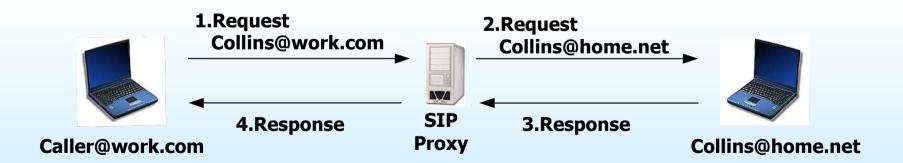
The Popularity of SIP

- Originally Developed in the MMUSIC (Multiparty Multimedia Session Control)
 - A separate SIP working group
 - RFC 2543
 - Many developers
 - The latest version: RFC 3261
- SIP + MGCP/MEGACO
 - The VoIP signaling in the future
- "bake-off" and SIPit activities
 - Various vendors come together and test their products against each other
 - to ensure that they have implemented the specification correctly
 - to ensure compatibility with other implementations

SIP Architecture


- A signaling protocol
 - The setup, modification, and tear-down of multimedia sessions
- SIP + SDP
 - Describe the session characteristics
- Separate signaling and media streams

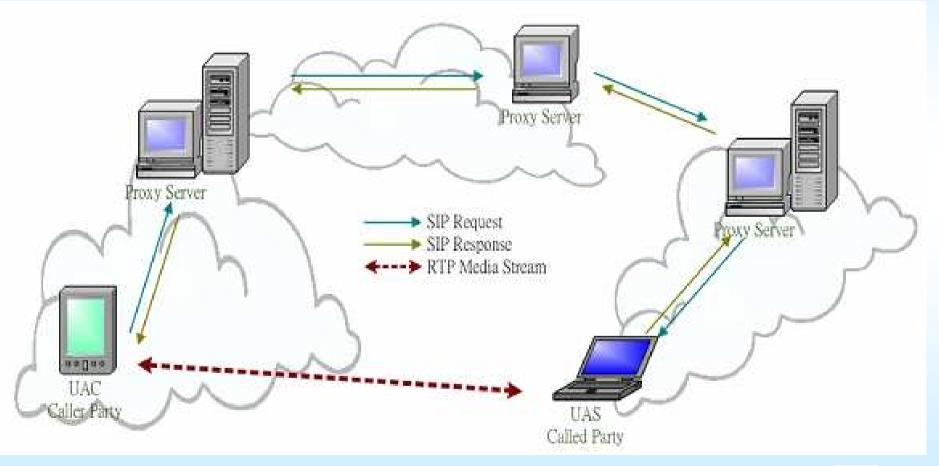
SIP Servers [1/3]


– Registrar

- Accepts SIP REGISTER requests
 - Indicating that the user is at a particular address
 - Personal mobility
- Typically combined with a proxy or redirect server

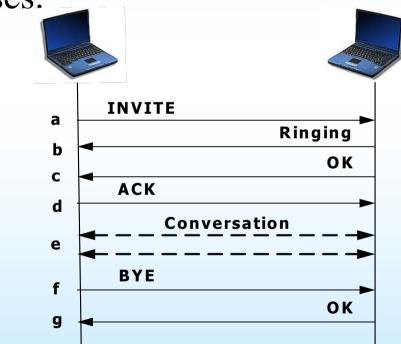
SIP Servers [2/3]

- Proxy servers
 - Handle requests or forward requests to other servers
 - Can be used for call forwarding, time-of-day routing, or follow-me services

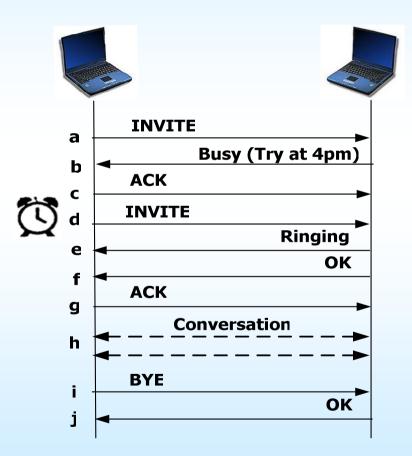

SIP Servers [3/3]

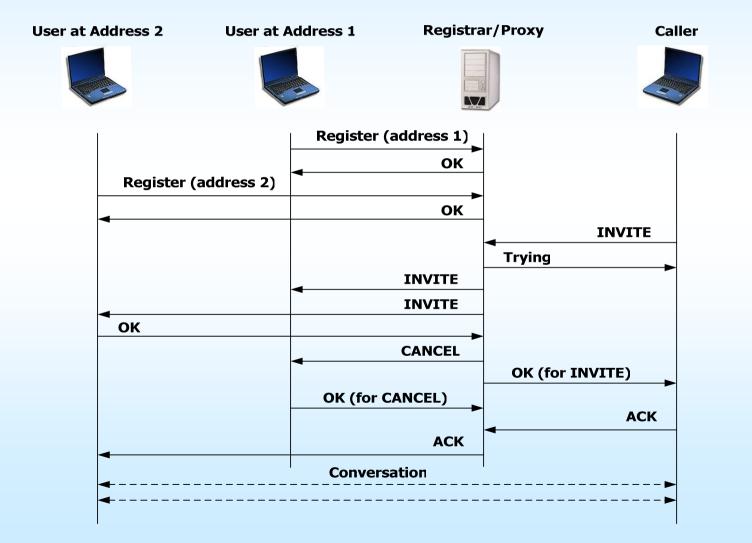
- Redirect servers

• Map the destination address to zero or more new addresses 1.Request Collins@work.com 2.Moved temporarily Contact: Collins@home.net 3.ACK Caller@work.com **Redirect Server** 4.Request


SIP Call Establishment [1/2]

SIP Call Establishment [2/2]


• It is simple, which contains a number of interim responses.


SIP Advantages

- Attempt to keep the signaling as simple as possible
- Offer a great deal of flexibility
 - Does not care what type of media is to be exchanged during a session or the type of transport to be used for the media
- Various pieces of information can be included within the messages
 - Including non-standard information
 - Enable the users to make intelligent decisions
 - The control of the intelligent features is placed in the hands of the customer, not the network operator.
 - E.g., SUBJECT header

Call Completion to A Busy User

"One number" service

40

Overview of SIP Messaging Syntax

- Text-based
 - Similar to HTTP
 - Disadvantage more bandwidth consumption
- SIP messages
 - message = start-line

*message-header CRLF

[message-body]

- start-line = request-line | status-line
- Request-line specifies the type of request
- The response line indicates the success or failure of a given request.

SIP Requests [1/2]

- Method SP Request-URI SP SIP-version CRLF
- Request-URI
 - The address of the destination
- Methods
 - INVITE, ACK, OPTIONS, BYE, CANCLE, REGISTER
 - INVITE
 - Initiate a session
 - Information of the calling and called parties
 - The type of media
 - \sim IAM (initial address message) of ISUP
 - ACK only when receiving the final response

SIP Requests [2/2]

– BYE

- Terminate a session
- Can be issued by either the calling or called party

- OPTIONS

- Query a server as to its capabilities
 - A particular type of media
- CANCEL
 - Terminate a pending request
 - E.g., an INVITE did not receive a final response

– REGISTER

- Log in and register the address with a SIP server
- "all SIP servers" multicast address 224.0.1.75)
- Can register with multiple servers
- Can have several registrations with one server

SIP Responses

- SIP Version SP Status Code SP Reason-Phrase CRLF
- Reason-Phrase
 - A textual description of the outcome
 - Could be presented to the user
- status code
 - A three-digit number
 - 1XX Informational
 - 2XX Success (only code 200 is defined)
 - 3XX Redirection
 - 4XX Request Failure
 - 5XX Server Failure
 - 6XX Global Failure
 - All responses, except for 1XX, are considered final
 - Should be ACKed

SIP Addressing

- SIP URI (Uniform Resource Identifier)
 - sip:user@host:port
 - sip:collins@home.net:5060
 - sip:3344556789@telco.net

SIP Message Body

- Message body
 - Describe the type of session
 - The most common structure for the message body is SDP (Session Description Protocol).
 - Could include an ISDN User Part message
 - Examined only at the two ends

The Session Description Protocol

- The Most Common Message Body
 - Be session information describing the media to be exchanged between the parties
 - SDP, RFC 2327 (initial publication)
- SIP uses SDP in an answer/offer mode.
 - An agreement between the two parties as to the types of media they are willing to share
 - RFC 3264 (An Offer/Answer Model with SDP)
 - To describe how SDP and SIP should be used together

Daniel<sip:Collins@station1.work.com>

Boss<sip:Manager@station2.work.com>

Daniel<sip:Collins@station1.work.com>

Boss<sip:Manager@station2.work.com>

Conclusion

- With better engineered network design, VoIP can be provided with good quality. Many ITSPs are doing that now.
- SIP is a flexible protocol which enables rich applications to be integrated with VoIP services.